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Abstract—Similarity query over time series data plays a significant role in various applications, such as signal processing, speech

recognition, and disease diagnosis. Meanwhile, driven by the reliable and flexible cloud services, encrypted time series data are often

outsourced to the cloud, and as a result, the similarity query over encrypted time series data has recently attracted considerable

attention. Nevertheless, existing solutions still have issues in supporting similarity queries over time series data with different lengths,

query accuracy and query efficiency. To address these issues, in this article, we propose a new efficient and privacy-preserving

similarity range query scheme, where the time warp edit distance (TWED) is used as the similarity metric. Specifically, we first organize

time series data into a kd-tree by leveraging TWED’s triangle inequality, and design an efficient similarity range query algorithm for the

kd-tree. Second, based on a symmetric homomorphic encryption technique, we carefully devise a suite of privacy-preserving protocols

to provide a security guarantee for kd-tree based similarity range queries. After that, by using the similarity range query algorithm and

these protocols, we propose our privacy-preserving similarity range query scheme, in which we elaborate on two strategies to make our

scheme resist against the cloud inference attack. Finally, we analyze the security of our scheme and conduct extensive experiments

to evaluate its performance, and the results indicate that our proposed scheme is indeed privacy-preserving and efficient.

Index Terms—Time series data, time warp edit distance, similarity range query, triangle inequality, kd-tree

Ç

1 INTRODUCTION

SIMILARITY query over time series data, which aims to iden-
tify samples that are similar to the sample of interest, has

a significant number of applications in various areas, such
as signal processing, speech recognition, and disease diag-
nosis [1]. For example, the similarity query over time series
ECG data can be used to detect Premature Ventricular Con-
traction disease [2]. Undoubtedly, the wide application has
made the similarity query over time series data popular.
Nevertheless, as the rapid development of the Internet of
Things (IoT), tremendous volumes of data are generated
with high velocity [3]. As reported in [4], the total amount
of data will reach 149 zettabytes by 2024. Such tremendous
volumes of data will seriously affect the efficiency of the
similarity query. To improve query efficiency, many data
owners migrate their data to the computationally powerful
cloud and delegate the cloud server to perform similarity
queries. However, since the data are private assets of the
data owners and the cloud server is not fully trusted, expos-
ing the plaintext data to the cloud server may inflict severe
economic loss to the data owners. For addressing the

privacy issue, data owners usually leverage encryption
techniques to encrypt the data before outsourcing them to
the cloud, yet a consensus has emerged that encryption
techniques will hinder the cloud server to perform the simi-
larity queries over the outsourced time series data.

To tackle the dilemma of similarity queries over
encrypted time series data, various schemes [2], [5], [6], [7],
[8], [9], [10], [11] were proposed. Based on the similarity
metric, existing schemes can be divided into three catego-
ries, i.e., Lp-norm based similarity query schemes [5], [6],
[7], [8], [9], [10], [11], edit distance based similarity query
schemes [12], [13], [14], and dynamic time warping (DTW)
based similarity query schemes [2]. However, Lp-based
schemes [5], [7], [8], [9], [10] cannot support similarity
queries over time series data with different lengths.
Although edit distance and DTW distance based schemes
[2], [12], [13], [14] can support similarity queries over time
series data with different lengths, the schemes [2], [12] can
only return approximate query results and the schemes
[13], [14] suffer from the linear search efficiency. Hence,
existing schemes still have issues in supporting similarity
queries over time series data with different lengths, query
accuracy and query efficiency.

To solve the above challenges, in this paper, we propose
an efficient and privacy-preserving similarity range query
scheme for time series data, where time warp edit distance
(TWED) (defined in Section 3.1) is deployed as the similarity
metric. Similar to edit distance and DTW distance, TWED
can support similarity queries over time series data with dif-
ferent lengths. Meanwhile, TWED computation involves the
absolute value computation and minimum value computa-
tion as described in Section 3.1. Although these basic opera-
tions can be supported by fully homomorphic encryption
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techniques [15] in a non-interactive and privacy-preserving
way, the consequent computational cost is too high. Thus,
we consider achieving TWED computation and the corre-
sponding similarity range queries by using an efficient sym-
metric homomorphic encryption (SHE) technique [16] in a
two-server model. The key idea is that we first organize time
series data into a kd-tree by leveraging TWED’s triangle
inequality, and design an efficient similarity range query
algorithm for the kd-tree. Then, we focus on designing pri-
vacy-preserving techniques to preserve the privacy of kd-
tree based similarity range queries. Specifically, the main
contributions of this paper are three folds as follows.

� First, based on an SHE technique [16], we carefully
devise a suite of privacy-preserving protocols including pri-
vacy-preserving sign computation protocol, minimum
value computation protocol, absolute value computation
protocol, and bootstrapping protocol.

� Second, based on the kd-tree based similarity range
query algorithm and the above-mentioned protocols, we
propose our privacy-preserving similarity range query
scheme in a two-server model, where server 1 and server 2
respectively store encrypted data and the corresponding
secret keys. Meanwhile, server 1 needs to be granted the
encrypted data comparison capability. Note that, in such a
model, server 1 may launch the cloud inference attack
(defined in Section 2.2). That is, when a server has a collec-
tion of encrypted data, the capability to compare encrypted
data, as well as the capability to construct the ciphertext for
any plaintext, it can infer the plaintexts of all encrypted data
by comparing the encrypted data with some ciphertexts
having known plaintexts. To resist against the cloud infer-
ence attack, we elaborate on the following two strategies.

(1) We design different encryption methods for kd-tree’s
internal nodes and leaf nodes such that each of them does
not allow server 1 to simultaneously have the capability to
compare encrypted data and the capability to construct the
ciphertext for any plaintext.

(2) Based on the above constrained encryption methods,
we carefully design different search methods for the kd-
tree’s internal nodes and leaf nodes such that server 1 and
server 2 can accomplish similarity range queries in a pri-
vacy-preserving way.

� Third, we analyze the security of our scheme and con-
duct experiments to evaluate its performance. The results
show that our scheme is privacy-preserving and can resist
against the cloud inference attack. Also, it is efficient in
terms of computational costs and communication overhead.
Especially, the security of our scheme depends on the secu-
rity of the SHE technique [16] but the SHE technique was
only proved to be known-plaintext attacks (KPA) secure. In
this work, as one of our contributions, we prove that the
SHE technique is chosen-plaintext attacks (CPA) secure,
and it can provide a strong security guarantee for our
scheme.

The remainder of this paper is organized as follows. In
Section 2, we introduce our system model, security model,
and design goals. Then, we describe some preliminaries in
Section 3. In Section 4, we present our scheme, followed by
security analysis and performance evaluation in Sections 5
and 6, respectively. In Section 7, we present some related
work. Finally, we draw our conclusion in Section 8.

2 MODELS AND DESIGN GOALS

In this section, we formalize our system model, security
model, and identify our design goals.

2.1 System Model

In our system model, we consider a cloud-assisted similar-
ity range query model over time series data, which involves
a data owner, a cloud with two servers fS1; S2g, and multi-
ple query users U ¼ fU1; U2; . . .g, as shown in Fig. 1.

� Data Owner: The data owner has a time series dataset
with n time series records, i.e., T ¼ fti ¼ ðti;1; ti;2; . . . ; ti;liÞj
i ¼ 1; 2; . . . ; ng, where li is the length of ti for i ¼ 1; 2; . . . ; n.
Each ti 2 T has a unique identity idi for i ¼ 1; 2; . . . ; n.
Meanwhile, we assume that all values in the dataset are
integers. If they are not integers originally, we can easily
convert them into integers. To make full use of these data,
the data owner is willing to offer a similarity range query
service to some users. Since the data owner only has limited
computing capability and storage space, it outsources the
dataset T to a cloud, and employs the cloud to offer the sim-
ilarity range query service to users. To preserve the privacy
of the data, the data owner encrypts the dataset T before
outsourcing them to the cloud.

� Cloud with Two Servers fS1; S2g: The cloud has two
servers fS1; S2g, and both of them have powerful comput-
ing capability and abundant storage space. The cloud is
responsible for storing the encrypted time series data for
the data owner and offering the similarity range query
service to query users. Suppose that ðq; dÞ is a query
request, where q is a time series record and d is a distance
threshold. Then, on receiving ðq; dÞ, the cloud will search
the encrypted dataset EðT Þ to find out the time series
records whose distance to q is equal to or less than d, i.e.,
ftijdðq; tiÞ � dg, where dð�; �Þ denotes the TWED distance
(defined in Section 3.1). Finally, the cloud will return
the identities of these records to the query user, i.e.,
fidijdðq; tiÞ � dg.

� Query Users U ¼ fU1; U2; . . .g: The system has a set of
query users U ¼ fU1; U2; . . .g. When they register in the sys-
tem, the data owner authorizes them with an authorized
key as shown in Fig. 1. After the authorization, the query
users can enjoy the similarity range query service.

Fig. 1. System model under consideration.
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2.2 Security Model

In our security model, the data owner is trusted as it is the
initiator of the entire system. For the query users, they are
assumed to be honest and are not allowed to collude with
S1. That is, they will faithfully launch the similarity query
requests to the cloud servers. As for the cloud servers
fS1; S2g, both of them are considered to be honest-but-curi-
ous. They will faithfully store the encrypted data for the
data owner and offer the similarity query service for query
users. However, they may be curious about some private
information including the plaintexts of the time series data,
query requests, as well as query results. Moreover, we
assume that there is no collusion between S1 and S2 because
different cloud service providers may have conflicts of
interest [10]. In addition, S1 is responsible for storing the
encrypted data. To obtain the plaintexts of the dataset, S1

may launch cloud inference attack, in which a cloud server
seeks to infer the plaintexts of the encrypted data. In this
attack, the cloud server is assumed to have a collection of
encrypted data, the capability to compare these encrypted
data, and the capability to construct the ciphertext for any
plaintext. Then, it can launch the cloud inference attack to
infer the plaintextm of a ciphertext EðmÞ as follows.

(1) The cloud server chooses a random number a. Then, it
constructs the ciphertext of i � a, i.e., Eði � aÞ, and compares
EðmÞ with Eði � aÞ for i ¼ f0; 1; 2; . . .g until it finds an i sat-
isfying i � a � m < ðiþ 1Þ � a.

(2) The cloud server continues to construct Eði � aþ jÞ
and compare EðmÞ with Eði � aþ jÞ for j ¼ f0; 1; . . . ; a� 1g
until it finds a j satisfying m ¼ i � aþ j. In this case, the
cloud server obtains the plaintextm ¼ i � aþ j.

It is worth noting that it is easy for the cloud server to
obtain the ciphertext of any plaintext data when the encryp-
tion technique is a public key encryption technique or a
symmetric encryption with homomorphic properties. For
the public key encryption technique, the cloud server can
encrypt any data with the public key. For the symmetric
encryption with homomorphic properties, when the cloud
server obtains a ciphertext Eð1Þ, it can use homomorphic
properties to generate EðmÞ for any plaintextm.

2.3 Design Goals

In this work, our goal is to design an efficient and privacy-
preserving similarity range query scheme for time series
data. Specifically, the following objectives should be
satisfied.

� Privacy preservation: The basic requirement of our pro-
posed scheme is privacy preservation. We aim to not only
preserve the privacy of the outsourced time series dataset,
query requests, as well as query results, but also resist
against the cloud inference attack.

� Efficiency: We also aim to minimize the computational
cost of similarity range queries and improve query effi-
ciency as much as possible.

3 PRELIMINARIES

In this section, we define the TWED-based similarity range
query, and briefly review kd-tree and the SHE technique.

3.1 TWED-Based Similarity Range Query

In this subsection, we formally define time warp edit dis-
tance, and then introduce the concept of TWED-based simi-
larity range query. TWED was proposed in [17] and it is a
distance metric for time series data. In [17], the authors
experimentally proved that TWED is quite effective com-
pared with Edit Distance, DTW, Longest Common Subse-
quence (LCSS), and Edit Distance with Real Penalty (ERP).
Formally, TWED can be defined as follows.

Definition 1 (Time warp edit distance). Suppose that t ¼
ðt1; . . . ; tltÞ and q ¼ ðq1; . . . ; qlq Þ are two time series records,
where lt and lq are respectively the lengths of t and q. Mean-
while, let tji1 ¼ ðt1; . . . ; tiÞ, and qjj1 ¼ ðq1; . . . ; qjÞ be the sub-
sequences of t and q. Then, the TWED between tji1 and qjj1 can
be computed as follows.

dðtji1;qj
j
1Þ ¼ min

dðtji�1
1 ;qjj1Þ þ Gðti ! LÞ

dðtji�1
1 ;qjj�1

1 Þ þ Gðti ! qjÞ
dðtji1;qj

j�1
1 Þ þ GðL ! qjÞ

8><
>: ;

with

Gðti ! LÞ ¼ jti � ti�1j þ �

Gðti ! qjÞ ¼ jti � qjj þ jti�1 � qj�1j
GðL ! qjÞ ¼ jqj � qj�1j þ �;

where � is a mismatch penalty parameter. Then, the distance
between t and q will be dðt;qÞ ¼ dðtjlt1 ;qj

lq
1 Þ.

TWED is a metric [17] and satisfies the triangle inequality
as proved in [18]. Specifically, given three time series
records t, p and q, we have jdðt;pÞ � dðq;pÞj � dðt;qÞ.

Algorithm 1. TWED(Record t, Record q)

1: Initialize an lt � lq matrix D
2: D½1; 1� ¼ jt1 � q1j;
3: for i = 2 to lt do
4: D½i; 1� ¼ D½i� 1; 1� þ jti � ti�1j þ �
5: for j ¼ 2 to lq do
6: D½1; j� ¼ D½1; j� 1� þ jqj � qj�1j þ �
7: for i ¼ 2 to lt do
8: for j ¼ 2 to lq do
9: d1 ¼ D½i� 1; j� þ jti � ti�1j þ �.
10: d2 ¼ D½i� 1; j� 1� þ jti � qjj þ jti�1 � qj�1j.
11: d3 ¼ D½i; j� 1� þ jqj � qj�1j þ �.
12: D½i; j� ¼ minfd1; d2; d3g.
13: return D½lt; lq�

TEWD Computation Algorithm. TWED between two series
records can be computed by a dynamic programming algo-
rithm. As shown in Algorithm 1, to compute dðt;qÞ, the
dynamic programming algorithm will incrementally com-
pute a distance matrix Dlt�lq step by step, where each D½i; j�
denotes the TWED between the subsequences tji1 and qjj1 for
i ¼ 1; 2; . . . ; lt and j ¼ 1; 2; . . . ; lq. Thus, based on the defini-
tion, we have dðt;qÞ ¼ D½lt; lq�.

Remark. To facilitate the description, the TWED considered
in this work is slightly different from that in [17]. Specifi-
cally, we remove the time elasticity parameter when com-
puting TWED. Actually, our proposed scheme can be
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easily extended to support the TWED-based similarity
range query with time elasticity.

Based on TWED, we can define the TWED-based similar-
ity range query. Suppose that T ¼ fti ¼ ðti;1; ti;2; . . . ; ti;liÞji¼
1; 2; . . . ; ng is a time series dataset, and each ti has a unique
identity idi. Then, the TWED-based similarity range query
can be formally defined as follows.

Definition 2 (TWED-based similarity range query). Let
ðq; dÞ be a query request, where q ¼ ðq1; q2; . . . ; qlqÞ is a query
record and d is a distance threshold. Then, the TWED-based
similarity range query is to search the dataset T for the time
series records, whose distance to q is equal to or less than d, i.e.,
fidijdðq; tiÞ � dg.

3.2 kd-Tree

kd-tree [19] is a tree-based index and is designed to organize
multi-dimensional data. It has two types of nodes, i.e., inter-
nal nodes and leaf nodes. Each internal node has a cutting
dimension cd, a cutting value val, a left subtree Tl and a
right subtree Tr. Each leaf node contains a data record. The
kd-tree is built by recursively cutting the dataset. Specifi-
cally, when building an internal node, we need to first
choose a cutting dimension cd among all dimensions and
use the median of all data records’ values in the cdth dimen-
sion as the cutting value val. Then, based on cd and val, we
cut the dataset into two subdatasets. One subdataset con-
tains the data records whose values in the cdth dimension
are less than val, which is used to build a left subtree Tl.
The other subdataset contains the data records whose val-
ues in the cdth dimension are equal to or larger than val,
which is used to build a right subtree Tr. Furthermore, we
can use fcd; val;Tl;Trg to build an internal node.

Range Queries Over kd-Tree. The kd-tree can efficiently
support range queries. Suppose that V ¼ fvi ¼ ðvi;1; vi;2;
. . . ; vi;kÞj i ¼ 1; 2; . . . ; ng is a k-dimensional dataset, and it is
represented to be a kd-tree T. Let Q ¼ ð½vl1; vr1�; ½vl2; vr2�;
. . . ; ½vlk; vrk�Þ denote a range query, where vli and vri are
respectively the lower bound and upper bound of the ith
query range for i ¼ 1; 2; . . . ; k. Then, the searcher can effi-
ciently search the kd-tree T to find out the data records
within Q. The search algorithm includes two stages, i.e.,
filtration and verification as shown in Algorithm 2.

Algorithm 2. RangeQuery(Tree T, Query Range Q)

// Filtration stage
1: C ¼ ;; // Initialize the candidate result
2: C ¼ FiltrationðT:root;Q);
// Verification stage

3: for each vi 2 C do
4: if vi 2 Q then
5: Result ¼ Result [ fvig;
6: return Result;

� Filtration stage: In the filtration stage, the searcher recur-
sively searches T for a set of candidate records C that are
probably within Q, as shown in Algorithm 3. When the
searched node is a leaf node, the searcher adds the node’s
data record into the candidate set C. When the searched
node is an internal node with fcd; val;Tl;Trg, the searcher

needs to check the relationship between the query range in
the cdth dimension (i.e., ½vlcd; vrcd�) and val. Based on their
relationship, the searcher determines whether to search the
left subtree and right subtree as follows.

Algorithm 3. Filtration(Node node, Query Range Q)

1: if node is a leaf node then
2: Add node’s data record into C;
3: else
4: if vlcd < val then
5: Filtration(node:Tl, Q);
6: if vrcd 	 val then
7: Filtration(node:Tr, Q);
8: return C;

(1) When vlcd < val, the searcher continues to search the
left subtree. This is because all data records’ values in the
left subtree are less than val in the cdth dimension. Then,
00vlcd < val00 means that Q interacts with the left subtree, so
the left subtree needs to be searched.

(2) When vrcd 	 val, the searcher continues to search the
right subtree. This is because all data records’ values in the
right subtree are equal to or larger than val in the cdth
dimension. Then, 00vrcd 	 val00 means that Q interacts with
the right subtree, so the right subtree needs to be searched.

� Verification stage: In the verification stage, the searcher
further verifies whether each candidate data record in C is
within Q or not. As shown in Algorithm 2, if vi 2 C is within
Q, the searcher adds vi into the query result, i.e., Result ¼
Result [ fvig.

3.3 The SHE Technique

The SHE technique is a symmetric homomorphic encryp-
tion technique and can efficiently support homomorphic
addition and multiplication [16]. The SHE technique
PSHE ¼ ðSHEKeyGen;SHEEnc;SHEDecÞ can be defined as
follows.

� SHEKeyGenðk0; k1; k2Þ: Given security parameters
fk0; k1; k2g satisfying k1 
 k2 < k0, the key generation algo-
rithm first chooses two large prime numbers p, q with jpj ¼
jqj ¼ k0, and sets N ¼ pq. Then, it selects a random number
L with jLj ¼ k2. Finally, the algorithm outputs the public
key pk ¼ ðk0; k1; k2;NÞ, the secret key sk ¼ ðp;LÞ, and the
message spaceM ¼ fmjm 2 ð�2k1 ; 2k1Þg.

� SHEEncðsk;mÞ: With the secret key sk, a message m 2
M is encrypted as EðmÞ ¼ ðrL þmÞð1þ r0pÞmod N , where
r 2 f0; 1gk2 and r0 2 f0; 1gk0 are random numbers.

� SHEDecðsk; EðmÞÞ: Given sk and EðmÞ, the decryption
algorithm recovers a message m0 as m0 ¼ ðEðmÞmod pÞ
modL ¼ ðmþLÞmod L. If m0 < L

2 , it means that m 	 0,
and we have m ¼ m0. Otherwise, if m0 > L

2 , it means that
m < 0, and we havem ¼ m0 � L.

The SHE technique satisfies the homomorphic addition
and multiplication properties as follows.

� Homomorphic addition-I: Two ciphertexts Eðm1Þ and
Eðm2Þ satisfy that Eðm1Þ þ Eðm2Þ ! Eðm1 þm2Þ.

� Homomorphic multiplication-I: Two ciphertexts Eðm1Þ
and Eðm2Þ satisfy Eðm1Þ � Eðm2Þ ! Eðm1 �m2Þ.

� Homomorphic addition-II: A ciphertext Eðm1Þ and a
plaintextm2 satisfy Eðm1Þ þm2 ! Eðm1 þm2Þ.
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� Homomorphic multiplication-II: A ciphertext Eðm1Þ
and a plaintext m2 satisfy Eðm1Þ �m2 ! Eðm1 �m2Þ.

Discussion About SHE’s Multiplicative Depth. The SHE
technique is a leveled fully homomorphic encryption. It
supports an unbounded number of homomorphic addition-
Is, addition-IIs and multiplication-IIs. However, it can only
support a limited number of homomorphic multiplication-
Is. This is because homomorphic multiplication-Is will
increase the random number in the ciphertext and too many
homomorphic multiplication-Is will result in the incorrect-
ness of decryption. Suppose that Eðm1Þ ¼ ðr1L þm1Þð1þ
r01pÞmodN and Eðm2Þ ¼ ðr2L þm2Þð1þ r02pÞmodN , where
r1; r2 2 f0; 1gk2 . Then, we have

Eðm1 �m2Þ ¼ Eðm1Þ � Eðm2Þ
¼ ðr1L þm1Þð1þ r01pÞðr2L þm2Þð1þ r02pÞmodN
¼ m1 �m2 þ r1r2L2 þ r1Lm1 þ r2Lm2 þ D � p;

where “D” denotes the coefficient of p. Then, we consider
decrypting the ciphertext Eðm1 �m2Þ as

ðEðm1 �m2Þmod pÞmodL
¼ ððm1 �m2 þ r1r2L2 þ r1Lm1 þ r2Lm2 þ D � pÞmod pÞmodL
¼ ððm1 �m2 þ r1r2L2 þ r1Lm1 þ r2Lm2Þmod pÞmodL:

In this case, the decryption is correct iff m1 �m2 < L, m1 �
m2 þ r1r2L2 þ r1Lm1 þ r2Lm2 < p. Since m1;m2 2 f0; 1gk1 ,
r1; r2;L 2 f0; 1gk2 and k1 
 k2, we have m1 �m2 þ r1Lm1 þ
r2Lm2 
 r1r2L2. Thus, we just need to guarantee that
r1r2L2 < p. Since the length of r1r2L2 is at most 4k2 and the
length of p is k0, if 4k2 < k0, we can guarantee that r1r2L2 <
p. Similarly, when the required multiplicative depth is u

(i.e., the maximal number of consecutive multiplications),
the parameters should satisfy that 2ðu þ 1Þk2 < k0. In other
words, given the parameters fk0; k2g, the maximum multi-
plicative depth of the SHE technique is u ¼ b k0

2k2
� 1c.

Remark 1. SHE’s homomorphic properties enable us to
encrypt data with ciphertexts. Given fEð0Þ; Eð1Þ; Eð�1Þg,
a messagem 2 M can be encrypted as

EðmÞ ¼ m � Eð1Þ þ r � Eð0Þ m 	 0
jmj � Eð�1Þ þ r � Eð0Þ m < 0;

�
(1)

where r 2 f0; 1gk2 is a random number for further ran-
domizing the ciphertext EðmÞ.

Remark 2. The SHE technique can resist against KPA as
proved in [16]. If we deploy the SHE technique as the
encryption technique, server S1 can obtain the ciphertexts
of any plaintexts with homomorphic properties. In this
case, S1 has the capability of launching CPA. To keep the
data secret from S1, we demand to deploy a homomor-
phic encryption scheme, which is semantically secure
under CPA. Luckily, we find that the SHE technique can
be proved to be CPA-secure. The detailed proof is shown
in Section 5.1.

4 OUR PROPOSED SCHEME

In this section, we first introduce an efficient similarity
range query algorithm for kd-tree and present some pri-
vacy-preserving protocols. Then, based on these building
blocks, we present an efficient and privacy-preserving simi-
larity range query scheme for time series data.

4.1 Efficient Similarity Range Query Algorithm

In this subsection, we introduce an efficient similarity range
query algorithm for kd-tree. First, we discuss on how to
organize time series data into a kd-tree, and then describe
the query algorithm in detail.

Organize Time Series Data into a kd-Tree. Suppose that T ¼
fti ¼ ðti;1; ti;2; . . . ; ti;liÞji ¼ 1; 2; . . . ; ng is a time series dataset.
To build a kd-tree for T , we first choose k time series
records P ¼ fpjjpj ¼ ðpj;1; pj;2; . . . ; pj;ljÞjj ¼ 1; 2; . . . ; kg as
pivots from the dataset T , where lj is the length of pj for j ¼
1; 2; . . . ; k. Then, based on T and P, we build a kd-tree T as
follows.

� Step 1: For each ti 2 T , we compute its TWEDs with k
pivots as vi ¼ ðdðti;p1Þ; . . . ; dðti;pkÞÞ for i ¼ 1; 2; . . . ; n.
Then, these distances can form a k-dimensional distance
dataset V ¼ fvi ¼ ðdðti;p1Þ; . . . ; dðti;pkÞÞji ¼ 1; . . . ; ng.

� Step 2: We build a kd-tree T for V. Then, we replace
the distance vectors in T’s leaf nodes with original time
series records. Specifically, if the distance vector in a leaf
node is vi, we replace vi with the record ti. The reason for
this replacement is that, in our follow-up algorithm, the
internal nodes of T can only assist the searcher to com-
plete filtration. To achieve accurate similarity queries, the
searcher needs to conduct further verification using origi-
nal time series data.

An Efficient Similarity Range Query Algorithm for kd-Tree.
With the kd-tree T, we design an efficient similarity range
query algorithm, as shown in Algorithm 4. Given a query
request ðq; tÞ, the searcher can run this algorithm to obtain
the query result ftijdðq; tiÞ � dg. This algorithm contains a
filtration stage and a verification stage.

� Filtration stage: In the filtration stage, the searcher
uses ðq; tÞ to construct a kd-tree based range query Q.
Then, the searcher performs Q over the kd-tree T to filter
out a set of candidate records that are possible in the
query result.

Specifically, the searcher first computes the distances
between q and each pivot pj, i.e., dðq;pjÞ for j ¼ 1; 2; . . . ; k.
Then, according to TWED’s triangle inequality, we have
jdðq;pjÞ � dðti;pjÞj � dðq; tiÞ. That is, jdðq;pjÞ � dðti;pjÞj is
a lower bound of dðq; tiÞ. Then, if ti satisfies dðq; tiÞ � d, the
inequality jdðq;pjÞ � dðti;pjÞj � d must hold. Furthermore,
we have dðti;pjÞ 2 ½dðq;pjÞ � d; dðq;pjÞ þ d� for j ¼
1; 2; . . . ; k. Without loss of generality, let ½vlj; vrj � denote the
range ½dðq;pjÞ � d; dðq;pjÞ þ d� for j ¼ 1; 2; . . . ; k. In this
case, we can obtain a query range

Q ¼ ð½vl1; vr1�; ½vl2; vr2�; . . . ; ½vlk; vrk�Þ: (2)

When ti satisfies dðq; tiÞ � d, we have

ðdðti;p1Þ; dðti;p2Þ; . . . ; dðti;pkÞÞ 2 Q: (3)
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Since ðdðti;p1Þ; dðti;p2Þ; . . . ; dðti;pkÞÞ has been represented
to be a kd-tree T, the searcher can perform the range query
Q over T to obtain a set of candidate records C that are pos-
sibly in the query result as Algorithm 3.

� Verification stage: In the verification stage, the searcher
verifies whether each ti 2 C satisfies dðq; tiÞ � d or not. If
dðq; tiÞ � d, the searcher adds ti into the query result, i.e.,
Result ¼ Result [ ftig.

Algorithm 4. SimQuery(Tree T, Query Request ðq; dÞ)
1: Represent ðq; dÞ to be Q
// Filtration stage

2: C ¼ ;; // Initialize the candidate result
3: C ¼ FiltrationðT:root;Q);
// Verification stage

4: for each ti 2 C do
5: if dðq; tiÞ � d then
6: Result ¼ Result [ ftig;
7: return Result;

How to Choose Pivots for the Dataset T ? Since the similarity
query efficiency heavily depends on the choice of pivots, we
discuss how to choose pivots. As described above, the query
range for the jth dimension is ½vlj; vrj � ¼ ½dðq;pjÞ � d; dðq;
pjÞ þ d� for j ¼ 1; 2; . . . ; n. These query ranges are used to fil-
ter the data records that are possibly in the query result.
Only the record ti satisfies that dðti;pjÞ 2 ½dðq;pjÞ �
d; dðq;pjÞ þ d� for all i ¼ 1; 2; . . . ; k, can it be in the query
result. To improve query efficiency, we should reduce the
number of data records that can simultaneously satisfy
dðti;pjÞ 2 ½dðq;pjÞ � d; dðq;pjÞ þ d� for all i ¼ 1; 2; . . . ; k.
Based on this idea, we should choose pivots that are far
away from each other.

For better understanding, we compare the difference of
choosing two pivots with small distance and choosing two
pivots with large distance, as shown in Fig. 2. Without loss of
generality, we suppose that the dataset in Fig. 2 is a two-
dimensional dataset, q is a query record and fp1;p2g are two
pivots. We draw four arcs, i.e., (i) dðti;p1Þ ¼ dðq;p1Þ � d;
(ii) dðti;p1Þ ¼ dðq;p1Þ þ d; (iii) dðti;p2Þ ¼ dðq;p2Þ � d; and
(iv) dðti;p2Þ ¼ dðq;p2Þ þ d. In this case, the data records fall-
ing in the shaded area simultaneously satisfy dðti;p1Þ 2
½dðq;p1Þ � d; dðq;p1Þ þ d� and dðti;p2Þ 2 ½dðq;p2Þ � d; dðq;
p2Þ þ d�, and they can be in the query result. We can see that
the shaded area in Fig. 2a with two near pivots is larger than
that in Fig. 2b with two far away pivots. This is because
when the two pivots are too near, they have the same filtra-
tion effect and the overall filtration effect will be weakened.
Thus, the chosen pivots should be far away from each other
andwe can use the followingmethod to choose pivots.

First, we randomly choose a data record as the first
pivot. Then, we traverse the dataset and choose the data
record that has the largest distance with the first pivot as
the second pivot. In a similar way, we can choose more
pivots. For the number of pivots, we show that 4 to 10 piv-
ots can get a good filtration effect in the performance eval-
uation in Section 6. In addition, the chosen pivots can be
either the data records of the raw time series or sub-series.
However, for convenience, we usually use raw time series
as the pivots.

4.2 Privacy-Preserving Protocols

Based on the SHE technique, we introduce four privacy-pre-
serving protocols including a sign computation protocol, a
minimum value computation protocol, an absolute value
computation protocol, and a bootstrapping protocol. In
these protocols, all parameters, encryption algorithms, and
decryption algorithms are based on the SHE technique.

Protocol 1: Sign Computation Protocol. The privacy-pre-
serving sign computation protocol is to compute the
encrypted sign of a message based on its ciphertext. Specifi-
cally, given a ciphertext EðmÞ, whenm < 0, the sign ofm is
�1. Meanwhile, the encrypted sign of m will be Eð�1Þ, i.e.,
EðsignðmÞÞ ¼ Eð�1Þ. Otherwise, whenm 	 0, EðsignðmÞÞ ¼
Eð1Þ. This protocol involves cloud server S1 and cloud
server S2. S1 holds a ciphertext EðmÞ, where m 2 M
(M ¼ fmjm 2 ð�2k1 ; 2k1ÞgÞ, and S2 holds the corresponding
secret key sk. Then, S1 and S2 can obtain EðsignðmÞÞ while
preserving the privacy ofm as follows.

� Step 1: S1 chooses two random numbers r1; r2 2 f0; 1gk1
satisfying r1 > r2 > 0.

� Step 2: S1 computes EðxÞ ¼ Eðr1 �mþ r2Þ with SHE’s
homomorphic properties, and sends EðxÞ to S2.

� Step 3: On receiving EðxÞ, S2 uses sk to recover x. Then,
based on the sign of x, S2 deduces that signðmÞ ¼ �1 if x <
0 and signðmÞ ¼ 1 otherwise. Finally, S2 returns EðsignðmÞÞ
to S1.

Correctness. The sign computation protocol is correct iff
“m < 0 , signðmÞ ¼ �1” and “m 	 0 , signðmÞ ¼ 1”.
Since “m < 0 , signðmÞ ¼ �1” and “m 	 0 , signðmÞ
¼ 1” are equivalent to each other, we only prove the equiva-
lence “m < 0 , signðmÞ ¼ �1” holds.

Proof. We prove the equivalence “m < 0 , signðmÞ ¼ �1”
by respectively proving its sufficiency and necessity.

(1) “)”: In the sign computation protocol, S1 will com-
pute EðxÞ ¼ Eðr1 �mþ r2Þ and send it to S2. After receiv-
ing EðxÞ, S2 recovers a plaintext x ¼ r1 �mþ r2 by
decryption. Due to r1 > r2 > 0, when m < 0, r1 �mþ
r2 < 0 holds, i.e., x < 0, S2 will return signðmÞ ¼ �1 toS1.

(2) “(”: When signðmÞ ¼ �1, it means that x < 0.
Then, we have r1 �mþ r2 < 0. Furthermore, we have
m < 0.

Therefore, the equivalence “m < 0 , signðmÞ ¼ �1”
holds, and the sign computation protocol is correct. tu

Protocol 2: Minimum Value Computation Protocol. The pri-
vacy-preserving minimum value computation protocol is to
compute Eðminfm1;m2gÞ based on Eðm1Þ and Eðm2Þ. This
protocol involves S1 and S2. S1 holds ciphertexts
fEðm1Þ; Eðm2Þ; Eð1Þ; Eð�1Þg, and S2 holds the secret key

Fig. 2. Example of pivots choosing.
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sk. Then, S1 and S2 can obtain Eðminfm1;m2gÞ while pre-
serving the privacy ofm1 andm2 as follows.

� Step 1: S1 utilizes SHE’s homomorphic properties to
compute EðmÞ ¼ Eðm1 �m2Þ ¼ Eðm1Þ þ Eðm2Þ � Eð�1Þ.
Then, S1 computes EðxÞ ¼ Eðr1 �mþ r2Þwith SHE’s homo-
morphic properties and sends EðxÞ to S2, where r1; r2 2
f0; 1gk1 are two random numbers satisfying r1 > r2 > 0.

� Step 2: On receiving EðxÞ, S2 uses sk to recover x and
returns an encrypted value EðbÞ to S1, where EðbÞ ¼ Eð1Þ if
x < 0 and EðbÞ ¼ Eð0Þ otherwise.

� Step 3: With EðbÞ, S1 computes Eðminfm1;m2gÞ ¼
Eðm1 �m2Þ � EðbÞ þEðm2Þ.

Correctness. The minimum value computation protocol is
correct iff Eðminfm1;m2gÞ ¼ Eðm1 �m2Þ � EðbÞ þ Eðm2Þ.
According to SHE’s homomorphic properties, it is equiva-
lent to prove Eðminfm1;m2gÞ ¼ Eððm1 �m2Þ � bþm2Þ.
That is, Eðminfm1;m2gÞ should be Eðm1Þ when m1 < m2

and Eðm2Þ otherwise.

Proof. Whenm1 < m2, we havem ¼ m1 �m2 < 0 and can
deduce that x ¼ r1 �mþ r2 < 0. Then, b ¼ 1 and Eðmin
fm1;m2gÞ ¼ Eððm1 �m2Þ � bþm2Þ ¼ Eðm1Þ. Otherwise,
when m1 	 m2, we have b ¼ 0 and Eðminfm1;m2gÞ ¼
Eðm2Þ. Thus, the minimum value computation protocol
is correct. tu

Protocol 3: Absolute Value Computation Protocol. The pri-
vacy-preserving absolute value computation protocol is to
compute Eðjm1 �m2jÞ based on Eðm1Þ and Eðm2Þ. This
protocol involves S1 and S2. S1 holds fEðm1Þ; Eðm2Þg, and
S2 holds the secret key sk. Then, S1 can obtain Eðjm1 �m2jÞ
with the help of S2 while preserving the privacy of m1 and
m2. The absolute value computation protocol has three steps
and the first step is the same as that of the minimum value
computation protocol. Thus, we only introduce step 2 and
step 3 as follows.

� Step 1: Same as the step 1 of the minimum value com-
putation protocol.

� Step 2: On receiving EðxÞ, S2 uses sk to recover the
plaintext x. Then, based on the sign of x, S2 returns an
encrypted value EðbÞ to S1, where EðbÞ ¼ Eð�1Þ if x < 0
and EðbÞ ¼ Eð1Þ otherwise.

� Step 3:On receiving EðbÞ, S1 computes the Eðjm1 �m2jÞ
as Eðjm1 �m2jÞ ¼ EðbÞ � Eðm1 �m2Þ.

Correctness. The absolute value computation protocol is
correct iff Eðjm1 �m2jÞ ¼ EðbÞ � Eðm1 �m2Þ. According to
SHE’s homomorphic properties, it is equivalent to prove
Eðjm1 �m2jÞ ¼ Eðb � ðm1 �m2ÞÞ. That is, jm1 �m2j should
bem2 �m1 whenm1 < m2 andm1 �m2 otherwise.

Proof.Whenm1 < m2, we havem ¼ m1 �m2 < 0 and x ¼
r1 �mþ r2 < 0. Then, we have b ¼ �1 and Eðjm1 �
m2jÞ ¼ Eðb � ðm1 �m2ÞÞ ¼ Eðm2 �m1Þ. Similarly, when
m1 	 m2, we have Eðjm1 �m2jÞ ¼ Eðm1 �m2Þ. Thus, the
absolute value computation protocol is correct. tu

Protocol 4: Bootstrapping Protocol. In the SHE technique,
the number of homomorphic multiplications supported by
the SHE technique is affected by the security parameters
[16]. To make the SHE technique support an infinite number
of homomorphic multiplications, we design a privacy-
preserving bootstrapping protocol, which can convert a

ciphertext to be a new ciphertext with smaller random num-
bers. This protocol involves S1 and S2. S1 holds fEðmÞ;
Eð1Þ; Eð�1Þg and S2 holds a secret key sk. Then, they can
bootstrap the ciphertext EðmÞ while preserving the privacy
ofm as follows.

� Step 1: S1 chooses a random number r1 2 M, and then
computes Eðmþ r1Þ as

Eðmþ r1Þ ¼
EðmÞ þ jr1j � Eð�1Þ r1 < 0
EðmÞ þ r1 � Eð1Þ r1 	 0:

�

S1 sends Eðmþ r1Þ to S2.
� Step 2: On receiving Eðmþ r1Þ, S2 decrypts Eðmþ r1Þ

to obtain a plaintext m0. Then, S2 uses sk to encrypt the
plaintext Eðm0Þ and returns it to S1.

� Step 3: On receiving Eðm0Þ, S1 generates a new cipher-
text EðmÞ as

EðmÞnew ¼ Eðm0Þ þ jr1j � Eð1Þ r1 < 0
Eðm0Þ þ r1 � Eð�1Þ r1 	 0:

�

Correctness. The bootstrapping protocol is correct iff EðmÞnew
is a ciphertext of m. When r1 < 0, we have EðmÞnew ¼
Eðm0Þ þ jr1j � Eð1Þ ¼ Eðmþ r1Þ þ jr1j � Eð1Þ ¼ Eðmþ r1 þ
jr1jÞ. Since r1 < 0, we can deduce that EðmÞnew ¼ EðmÞ.
Similarly, when r1 	 0, the equality EðmÞnew ¼ EðmÞ also
holds.

4.3 Description of Our Scheme

In this subsection, we present our similarity range query
scheme based on the similarity range query algorithm in
Algorithm 4. In this algorithm, the search process contains a
filtration stage and a verification stage. In the filtration
stage, the searcher processes the range query Q based on
the data in kd-tree’s internal nodes. In the verification stage,
the searcher only processes the similarity range query ðq; dÞ
based on the candidate data records in kd-tree’s leaf nodes.

To resist the cloud inference attack, we consider to use
different encryption methods to encrypt the data used in
the filtration stage and the data used in the verification
stage. Each encryption method should satisfy that S1 cannot
have the capability to compare encrypted data and the capa-
bility to construct the ciphertext for any plaintext at the
same time. Specifically, we encrypt Q and kd-tree’s internal
nodes with an invertible matrix such that S1 cannot con-
struct the ciphertext for any plaintext. Meanwhile, we
encrypt ðq; dÞ and kd-tree’s leaf nodes with the SHE tech-
nique such that S1 cannot compare any encrypted data.

Specifically, our similarity range query scheme consists
of three phases, i.e., system initialization, local data out-
sourcing, and similarity range query processing.

4.3.1 System Initialization

The data owner initializes the entire system. First, the data
owner generates an invertible matrix A 2 Rð2kþ4Þ�ð2kþ4Þ for
the encryption of kd-tree’s internal nodes, where R is the
real domain. Then, given security parameters ðk0; k1; k2Þ, the
data owner calls SHEKeyGenðk0; k1; k2Þ to generate a pair of
public key and secret key, i.e., fpk; skg, for the encryption of
kd-tree’s leaf nodes. After that, the data owner publishes pk,
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and sends sk to S2. Meanwhile, it generates two ciphertexts
fEð�1Þ; Eð1Þg and sends them to S1. Furthermore, to build
a kd-tree for his/her dataset, the data owner chooses k piv-
ots P ¼ fpjjpj ¼ ðpj;1; pj;2; . . . ; pj;ljÞjj ¼ 1; 2; . . . ; kg from the
dataset T . When a query user registers in the system, the
data owner will generate a set of ciphertexts
fEð0Þ; Eð1Þ; Eð�1Þg. Then, the data owner authorizes the
query user with these ciphertexts and fA�1;Pg, where A�1

is the inverse of A.

4.3.2 Local Data Outsourcing

Suppose that T ¼ fti ¼ ðti;1; ti;2; . . . ; ti;liÞji ¼ 1; 2; . . . ; ng is a
dataset, and each ti 2 T has a unique identity idi. Let P ¼
fpjjpj ¼ ðpj;1; pj;2; . . . ; pj;ljÞjj ¼ 1; 2; . . . ; kg be k pivots cho-
sen in the system initialization phase. The data owner out-
sources the dataset to the server S1 as follows.

� Step 1: Based on T and P, the data owner organizes the
dataset T into a kd-tree T as described in Section 4.1.

� Step 2: The data owner encrypts T’s internal nodes. For
each node with fcd; val;Tl;Trg, the data owner uses the
matrix A to encrypt it as follows.

(1) Construct two ð2kþ 2Þ-dimensional vectors uL ¼
ðuL;1; . . . ; uL;2kþ2Þ and uR ¼ ðuR;1; . . . ; uR;2kþ2Þ as

uL;i ¼

1 i ¼ 2 � cd� 1

�val i ¼ 2 � kþ 1

1 i ¼ 2 � kþ 2

0 Otherwise

; uR;i ¼

�1 i ¼ 2 � cd
val i ¼ 2 � kþ 1

1 i ¼ 2 � kþ 2

0 Otherwise:

8>>><
>>>:

8>>><
>>>:

(2) Encrypt the vectors uL and uR as

CTuL ¼ rLðuL; r
0
L; r

0
LÞA

CTuR ¼ rRðuR; r
0
R; r

0
RÞA;

�
(4)

where r0L; r
0
R 2 R are two random real numbers, and rL; rR 2

Rþ are two positive real random numbers. Then, the inter-
nal node is encrypted to be CTnode ¼ fðCTuL ; node:TlÞ;
ðCTuR; node:TrÞg, where node:Tl and node:Tr are respec-
tively node’s left subtree and right subtree. Meanwhile, to
preserve the privacy of the data, the left subtree and right
subtree are randomly permutated such that they are
indistinguishable.

� Step 3: The data owner encrypts T’s leaf nodes with
SHEEncðsk;mÞ algorithm. Each leaf node has a time series
record ti ¼ ðti;1; ti;2; . . . ; ti;liÞ and an identity idi. The data
owner will use fpk; skg to encrypt them as fEðtiÞ; EðidiÞg,
where EðtiÞ ¼ ðEðti;1Þ; Eðti;2Þ; . . . ; Eðti;liÞÞ.

� Step 4: Finally, the data owner outsources the encrypted
kd-tree, denoted by EðTÞ, to the server S1.

4.3.3 Similarity Range Query Processing

On receiving EðTÞ, the cloud can offer similarity range
query service to query users. Specifically, the query user
can launch a query request ðq; dÞ as the following steps.

� Step 1: Based on ðq; dÞ, the query user uses A�1 to gener-
ate a filtration token for the filtration stage of the similarity
range query.

(1) The query user uses ðq; dÞ to construct a range query
Q ¼ ð½vl1; vr1�; ½vl2; vr2�; . . . ; ½vlk; vrk�Þ as described in Section 4.1,
where ½vlj; vrj � ¼ ½dðq;pjÞ � d; dðq;pjÞ þ d� for j ¼ 1; . . . ; k.

(2) The query user chooses two positive random real
numbers r1; r2 2 Rþ satisfying r1 > r2 > 0, and constructs
a ð2kþ 2Þ-dimensional vector z ¼ ðz1; . . . ; z2kþ2Þ as

z2i�1 ¼ r1 � vli 1 � i � k
z2i ¼ r1 � vri 1 � i � k
z2kþ1 ¼ r1; z2kþ2 ¼ r2:

8<
:

(3) The query user encrypts z as TKz ¼ ðz; rq;�rqÞ
ðA�1ÞT , where rq 2 R is a random number.

� Step 2: Based on ðq; dÞ, the query user uses
fEð0Þ; Eð1Þ; Eð�1Þg to generate the verification token
ðEðqÞ; EðdÞÞ, where EðqÞ ¼ ðEðq1Þ; . . . ; EðqlqÞÞ. Specifically,
qi and d are encrypted as Eq. (1) for j ¼ 1; 2; . . . ; lq.

� Step 3: The query user chooses a session key ssk. Then,
it sends a similarity range query request with tokens
fTKz; EðqÞ; EðdÞg and ssk to S1 via a secure channel.

� Step 4: On receiving fTKz; EðqÞ; EðdÞg, S1 and S2 coop-
erate to search EðTÞ for the query result. The search process
contains a filtration stage and a verification stage.

Filtration Stage. In the filtration stage, S1 searches EðTÞ to
obtain a set of candidate time series records that are possi-
bly in the query result, as shown in Algorithm 5. The filtra-
tion algorithm over the encrypted kd-tree is similar to that
over the plaintext kd-tree. Differently, the conditions
“vlcd < val” and “vrcd 	 val” are replaced with “CTuL � TKz

< 0” and “CTuR � TKz 	 0”.

Algorithm 5. FiltrationCipher(NodeEðnodeÞ, TokenTKz)

1: if node is a leaf node then
2: Add node’s encrypted data into C;
3: else
4: if CTuL � TKz < 0 then
5: FiltrationCipher(node:Tl, TKz);
6: if CTuR � TKz 	 0 then
7: FiltrationCipher(node:Tr, TKz);
8: return C;

Correctness. The filtration algorithm is correct iff

CTuL � TKz < 0 , vlcd < val

CTuR � TKz 	 0 , vrcd 	 val:

(

Proof. First, we have

CTuL � TKz ¼ ðrLðuL; r
0
L; r

0
LÞAÞ � ððz; rq;�rqÞðA�1ÞT Þ

¼ rLðuL; r
0
L; r

0
LÞðz; rq;�rqÞT

¼ rL

 X2kþ2

i¼1

ðuL;i � ziÞ þ r0L � rq � r0L � rq

!

¼ rLðr1ðvlcd � valÞ þ r2Þ:

When CTuL � TKz < 0, we have rLðr1ðvlcd � valÞ þ r2Þ <
0. Since rL > 0, we can deduce that r1ðvlcd � valÞ þ r2 <
0. Moreover, since r1 > 0, r2 > 0 and r1 > r2, we
have vlcd < val. In contrast, when vlcd < val, it is easy
to deduce that CTuL � TKz < 0. Thus, CTuL � TKz <
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0 , vlcd < val. Similarly, we can prove CTuR � TKz 	
0 , vrcd 	 val. tu

After the filtration stage, S1 can obtain a set of records
C ¼ fEðtiÞ; EðidiÞjti may satisfy dðti;qÞ � dg.

Verification Stage. In this stage, S1 verifies whether each
fEðtiÞ; EðidiÞg satisfies dðti;qÞ � d or not as follows.

(1) S1 and S2 compute Eðdðti;qÞÞ. The TWED computa-
tion algorithm over encrypted records is similar to that over
plaintext records in Algorithm 1. Differently, since both ti
and q are encrypted, the algorithm will compute an
encrypted distance matrix. Based on Algorithm 1, comput-
ing each element of the encrypted distance matrix requires
three types of basic operations over encrypted data, i.e.,
addition, absolute value computation, and minimum value
computation, which can be respectively completed by the
homomorphic property of the SHE technique, our privacy-
preserving absolute value computation protocol and mini-
mum value computation protocol. In addition, when finish-
ing one element computation, the cloud server will run the
bootstrapping protocol to convert the element to be a new
ciphertext with smaller random numbers. Finally, S1 can
obtain the encrypted distance Eðdðti;qÞÞ.

(2) S1 computes Eðd� dðti;qÞÞ ¼ EðdÞ þ Eð�1Þ � Eðdðti;
qÞÞ and runs the sign computation protocol to obtain the
encrypted sign of d� dðti;qÞ, i.e., Eðsignðd� dðti;qÞÞÞ. For a
easy description, we let EðbiÞ denote Eðsignðd� dðti;qÞÞÞ.
Then, we have

EðbiÞ ¼
Eð�1Þ d < dðt;qÞ
Eð1Þ d 	 dðt;qÞ:

�

(3) S1 computes Eðbi � idiÞ ¼ EðbiÞ � EðidiÞ.
After the verification stage, S1 can obtain a collection of

encrypted identities, i.e., EðIDÞ ¼ fEðbi � idiÞjfEðtiÞ;
EðidiÞg 2 Cg.

� Step 5: Based on EðIDÞ, S1 and S2 cooperate together to
return the query result to the query user. To preserve the
privacy of idi, S1 and S2 will respectively return a part of
information about idi to the query user. Meanwhile, it is
only when dðti;qÞ � d, i.e., EðbiÞ ¼ Eð1Þ, idi needs to be
returned to the query user. This is because only when
dðq; tiÞ � d, ti satisfies the query condition. Based on this
idea, in the following, we take Eðbi � idiÞ as an example to
show how to return the correct query result to the query
user in a privacy-preserving way.

(1) S1 chooses two random numbers ri;1; ri;2 2 f0; 1gk1
such that ri;1 > ri;2, and S1 computes two ciphertexts as

AESsskðri;1jjri;2Þ
EðxÞ ¼ Eðbi � idi � ri;1 þ ri;2Þ:

�

Then, S1 sends them to S2.
(2) On receiving AESsskðri;1jjri;2Þ and EðxÞ ¼ Eðbi � idi �

ri;1 þ ri;2Þ, S2 first recovers x by decryption. Based on the
sign of x, S2 obtains signðbi � idiÞ. If signðbi � idiÞ ¼ 1, we
have EðbiÞ ¼ Eð1Þ due to idi 2 f0; 1gk1 . In this case, idi needs
to be returned. Specifically, S2 will return fAESsskðri;1jj
ri;2Þ; xg to the query user via a secure channel, where
AESsskðri;1jjri;2Þ is computed by S1 and x is computed S2.

(3) On receiving fAESsskðri;1jjri;2Þ; xg, the query user first
uses ssk to recover ri;1 and ri;2, and computes idi as

idi ¼
x� ri;2
ri;1

: (5)

Similarly, S1 and S2 returns all identifies of data records sat-
isfying the query condition to the query user, i.e., fidijdðq;
tiÞ � dg.

Correctness. In the following, we show Eq. (5) is correct.

Proof. Since signðbi � idiÞ ¼ 1, we have bi ¼ 1 and bi � idi �
ri;1 þ ri;2 > 0. Then, we can deduce that x ¼ idi � ri;1 þ
ri;2. Thus, we have

x�ri;2
ri;1

¼ idi, and Eq. (5) is correct. tu

5 SECURITY ANALYSIS

In this section, we analyze the security of our similarity
range query scheme. Since our scheme is based on the SHE
technique and the SHE technique is required to be CPA-
secure as discussed in Section 3.3, we first prove that the
SHE technique is semantically secure against CPA, and
then prove the security of our scheme. Finally, we show
that our scheme can resist against the cloud inference attack.

5.1 Security of SHE Technique

We prove that SHE technique is semantically secure against
CPA by reducing the security of the SHE technique to an
ðL; pÞ-based decision assumption. In the following, we first
introduce ðL; pÞ-based decision problem and ðL; pÞ-based
decision assumption. Then, we prove that the SHE tech-
nique is semantically secure against CPA under the
ðL; pÞ-based decision assumption.

According to the SHE technique, in the following
description, let k2 and k0 be two security parameters satisfy-
ing k2 < k0. Let p and q be two large primes with jpj ¼ jqj ¼
k0. Let N ¼ pq and ZN is a group of integers modulo N . Let
L be a random number with jLj ¼ k2.

Before introducing the ðL; pÞ-based decision problem, we
first introduce three basic lemmas used in it.

Lemma 1. Any valid ciphertext in the SHE technique is in the
form of EðmÞ ¼ ðmþ aL þ bpÞmodN , where a;b 2 ZN and
aL < p.

Proof. First, for the ciphertext without being applied homo-
morphic operations, it is EðmÞ ¼ ðrL þmÞð1þ r0pÞ
modN , where r 2 f0; 1gk2 and r0 2 f0; 1gk0 . We have

EðmÞ ¼ ðrL þmÞð1þ r0pÞmodN
¼ ðmþ rL þ ðrr0L þmr0ÞpÞmodN :

Let a ¼ rmodN and b ¼ ðrr0L þmr0ÞmodN . Then, any
EðmÞ can be represented as EðmÞ ¼ ðmþ aL þ bpÞ
modN . Second, for the ciphertext being applied homo-
morphic operations, it is easy to deduce that the cipher-
text is also in the form of EðmÞ ¼ ðmþ aL þ bpÞmodN ,
only if the resultingm < L and aL < p.

In the following, we show the reason why the cipher-
text EðmÞ ¼ ðmþ aL þ bpÞmodN should satisfy aL <
p. This is because decryptingm is to compute

ðEðmÞmod pÞmodL
¼ ðððmþ aL þ bpÞmodNÞmod pÞmodL
¼ ððmþ aLÞmod pÞmodL:
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The decrypted message is correct iff ðmþ aLÞmod p ¼
mþ aL, i.e., mþ aL < p. Since m 2 ð�2k1 ; 2k1Þ, jpj ¼ k0,
and k1 
 k0, we can deduce that m 
 p. Then, we can
obtain that mþ aL < p is approximately equivalent to
aL < p. That is, a valid ciphertext EðmÞ ¼ ðmþ aL þ
bpÞmodN should satisfy aL < p. tu

Based on the form of the ciphertext, we can construct a
set S as S : fx ¼ ðaL þ bpÞmodN ja;b 2 ZN ;aL < pg. We
can observe that the ciphertext EðmÞ ¼ ðmþ aL þ
bpÞmodN can be represented to be EðmÞ ¼ mþ x, where
x 2 S. Next, we show that for each x 2 S, its representation
is unique.

Lemma 2. For any x 2 S ( S : fx ¼ ðaL þ bpÞmodN ja;
b 2 ZN ;aL < pg), the representation x ¼ ðaL þ bpÞmodN
is unique.

Proof. We prove Lemma 2 by contradiction. Suppose that
there are two pairs ða1;b1Þ and ða2;b2Þ such that x ¼
ða1L þ b1pÞmodN ¼ ða2L þ b2pÞmodN . Then, we have

ða1Lþ b1pÞmodN ¼ ða2L þ b2pÞmodN
, ðða1 � a2ÞL þ ðb1 � b2ÞpÞmodN ¼ 0

, ða1 � a2ÞLmod p ¼ 0 , ja1 � a2jLmod p ¼ 0:

Since a1L < p and a2L < p, we have ja1 � a2jL < p and
ja1 � a2jLmod p ¼ ja1 � a2jL ¼ 0. Hence, a1 ¼ a2 and
a1L ¼ a2L. Moreover, we can deduce that b1pmodN ¼
b2pmodN ¼ ðx� a1LÞmodN . Thus, b1 ¼ b2. As a result,
any x 2 S can be uniquely represented as x ¼ ðaL þ
bpÞmodN , where a;b 2 ZN ;aL < p. tu

In the following, we show that any x 2 ZN can be repre-
sented as x ¼ ðaL þ bpÞmodN . Different from the form of a
valid ciphertext, the representation of x does not require
aL < p. The details are as follows.

Lemma 3. For any x 2 ZN , there exist a;b 2 ZN such that
x ¼ ðaL þ bpÞmodN .

Proof. Since jLj ¼ k2, jpj ¼ k0, and k2 < k0, we have L < p.
Since p is a prime, we have gcdðL; pÞ ¼ 1. According to
the Extended euclidean algorithm, there exist two num-
bers g and c such that gL þ cp ¼ 1, where g and c have
opposite signs. For any x 2 ZN , it can be represented as

x ¼ x � 1 ¼ x � ðgL þ cpÞ ¼ xgL þ xcp:

Let a ¼ xgmodN and b ¼ xcmodN . Then, we have

ðaL þ bpÞmodN ¼ xgL þ xcpmodN ¼ x:

As a result, any x 2 ZN can be represented as x ¼
ðaL þ bpÞmodN , and ZN can be represented as
fx ¼ ðaL þ bpÞmodN ja;b 2 ZN g. tu

Based on the definition of set S, we can see S � ZN , and
thus ZN can be divided into two sets

S : fx ¼ ðaL þ bpÞmodN ja;b 2 ZN ;aL < pg
S ¼ ZN n S : fx ¼ ðaLþ bpÞmodN ja;b 2 ZN ;aL 	 pg:

�

According to the two sets S; S, where S [ S ¼ ZN , we define
the ðL; pÞ-based decision problem.

Definition 3 (ðL; pÞ-based decision problem). Given
ðk0; k2;NÞ, the ðL; pÞ-based decision problem is to determine
that a random number x 2 ZN is in S or S without knowing
ðp; q;LÞ.

� Intractability of ðL; pÞ-Based Decision Problem. The
ðL; pÞ-based decision problem is to determine whether a
random number x 2 ZN is in S or S without knowing
ðp; q;LÞ. It is easy to observe that there is no efficient algo-
rithm to solve the ðL; pÞ-based decision problem when
ðp; q;LÞ are unknown. Thus, to solve this decision problem,
the distinguisher B can only attempt to find the values of
fp; q;Lg in the following two ways.

� Since N ¼ pq, the first way is to factorize N to obtain p
and q. After obtaining p, B can recover Lwhen it has a set of
values fxi ¼ ðaiL þ bipÞmodN 2 Sji ¼ 1; 2; . . . ; lg. By com-
puting each xi mod p, B can obtain a new set of values
faiLji ¼ 1; 2; . . . ; lg. Then, by computing the great common
division of all values in faiLji ¼ 1; 2; . . . ; lg, L can be
revealed with a high probability. Once B knows a, L, the
ðL; pÞ-based decision problem can be solved. Therefore, we
need to choose proper parameter k0 for jpj ¼ jqj ¼ k0 to
ensure the large integer factoring problem is hard.

� The second way is to exhaust the values of fa;Lg and
compute gcdðx� aL;NÞ. Since N ¼ pq, gcdðx� aL;NÞ is
either p or q. Then, there are two cases.

(1) When gcdðx� aL;NÞ ¼ p, B has the values of a, L
and p. In this case, B can solve the ðL; pÞ-based decision
problem based on the value of a.

(2) When gcdðx� aL;NÞ ¼ q, B has the values of a, L
and q. Since x can also be represented to be x ¼ ða1L þ
b1qÞmodN , the obtained a is actually a1 rather than a in x ¼
ðaLþ bpÞmodN . To obtain the value of a, B first computes
p ¼ N

q and further uses Extend euclidean algorithm to com-
pute a and b satisfying x ¼ ðaL þ bpÞmodN . Then, it can
solve the ðL; pÞ-based decision problem based on the value
of a.

In this way, the computational cost comes from exhaust-
ing the values of fa;Lg. According to Lemma 2, when x 2
S, the representation of x ¼ ðaL þ bpÞmodN is unique.
Meanwhile, since a > 0 and L is a k2-bit number, the
computational cost is larger than 2k2 .

Summarizing the above two ways, when the security
parameters k0 and k2 are large enough, e.g., k0 ¼ 512 and
k2 ¼ 160, the ðL; pÞ-based decision problem is intractable.

Definition 4 (ðL; pÞ-based Decision Assumption).
ðL; pÞ-based decision problem satisfies ðL; pÞ-based decision
assumption if for any polynomial time algorithm, its advantage
in solving the ðL; pÞ-based decision problem is a negligible
function in k0 and k2.

Theorem 1. The SHE technique is semantically secure against
CPA under the ðL; pÞ-based decision assumption.

Proof. Assume that there exists a probabilistic polynomial
time (PPT) adversary A that has a non-negligible advan-
tage " to break the semantic security of the SHE technique.
We can construct a distinguisher B, which has access to A
and can have a non-negligible advantage to break the
ðL; pÞ-based decision problem. Let z 2 f0; 1g be a random
bit, an ðL; pÞ-based decision instance ðk0; k2;N ; xÞ is given
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to B, where x is randomly chosen from S if z ¼ 0, and x is
randomly chosen from S if z ¼ 1. Then, the ðL; pÞ-based
decision problem is to guess z.

With the ðL; pÞ-based decision instance ðk0; k2;N ; xÞ, B
first chooses k1 such that k1 
 k2 and sets M ¼ fmjm 2
ð�2k1 ; 2k1Þg as the message space. Then, B sends ðk0; k1;
k2;NÞ to A.

Upon receiving ðk0; k1; k2;NÞ, A chooses two mes-
sages m0;m1 2 M and sends them to B. At this time, B
flips a bit b 2 f0; 1g, computes c ¼ mb þ x and returns c
as a ciphertext back to A.

After receiving c, A returns B a bit b0 2 f0; 1g as the
guess of b. B then guesses z ¼ 0 if b0 ¼ b. Obviously,
when z ¼ 0, i.e., x 2 S, we have c ¼ mb þ x ¼ mb þ aL þ
bpmodN is a valid ciphertext. In this case, A can exert
his capability and will guess b correctly with the proba-
bility 1

2 þ ". Then, Pr½B successjz ¼ 0� ¼ 1
2 þ ". On the other

hand, when z ¼ 1, i.e., x 2 S, c ¼ mb þ x ¼ mb þ aL þ
bpmodN is no longer a valid ciphertext. Then, the proba-
bility that A can guess b correctly is only 1

2 . Then,
Pr½B successjz ¼ 1� ¼ 1

2 . Summarizing the above two
cases, we have Pr½B success� ¼ 1

2 ð12 þ "Þ þ 1
2 � 12 ¼ 1

2 þ "
2 .

Since " is non-negligible, the above result contradicts
with the ðL; pÞ-based decision assumption. Thus, the
SHE technique is semantically secure against CPA. tu

5.2 Security of Our Similarity Range Query Scheme

Our similarity range query scheme is a searchable encryp-
tion scheme, so we prove that it is selectively secure in the
real/ideal world model. Before that, we define the leakage
function of our scheme from the perspective of S1 and S2.

� LðS1Þ: The information leaked to S1 includes the public
key pk, encrypted kd-tree EðTÞ, query token fTKzi ; EðqiÞ;
EðdiÞg, access pattern of EðTÞ, and two ciphertexts fEð�1Þ;
Eð1Þg.

� LðS2Þ: The information leaked to S2 includes public key
pk, secret key sk, the number of time series records in the
candidate results, and that in the final results.

Based on LðS1Þ and LðS2Þ, we can define the real/ideal
world as follows.

Real World. In the real world, there are two probabilistic
polynomial time adversaries, denoted by A1 and A2, and a
challenger, where A1 and A2 are non-collusive. The chal-
lenger interacts with A1 and A2 as follows.

� System initialization phase: A1 sends a time series dataset
T ¼ fti ¼ ðti;1; ti;2; . . . ; ti;liÞji ¼ 1; 2; . . . ; ng and the identity of
each ti is idi to the challenger. The challenger runs the system
initialization algorithm in the similarity range query scheme
to generate the security keys fpk; sk;P;Ag. Then, the chal-
lenger publishes pk and sends sk to A2. With the security
keys fpk;P;Ag, the challenger runs the local data outsourc-
ing algorithm to encrypt T into an encrypted kd-treeEðTÞ.

� Token generation phase 1: A1 submits w1 similarity
queries fðqi; diÞj1 � i � w1g to the challenger, where w1 is a
polynomial number. The challenger runs the token genera-
tion algorithm to generate the tokens fTKzi ; EðqiÞ; EðdiÞj1 �
i � w1g for these queries and returns them to A1.

� Challenge phase: The challenger returns EðTÞ to A1.
� Token generation phase 2: A1 submits w2 � w1 similarity

queries fðqi; diÞjw1 þ 1 � i � w2g to the challenger and gets

the query tokens fTKzi ; EðqiÞ; EðdiÞjw1 þ 1 � i � w2g from
the challenger, where w2 is a polynomial number.

� Similarity Range Query Processing: When A1 obtains the
query tokens fTKzi ; EðqiÞ; EðdiÞj1 � i � w2g, A1 and A2

cooperatively search on EðTÞ to obtain the query result of
each token fTKzi ; EðqiÞ; EðdiÞg.

In the real world, the view of A1, i.e., ViewA1;Real, includes
fEðTÞ; fTKzi ; EðqiÞ; EðdiÞgw2

i¼1g, access pattern of EðTÞ and
some SHE ciphertexts received in the privacy-preserving
protocols. The view of A2, i.e., ViewA2;Real, includes the AES
ciphertexts in the candidate result and query result, and
some plaintexts received in the privacy-preserving protocols.

Ideal World. The ideal world involves PPT adversaries A1

and A2, and a simulator with the leakage LðS1Þ and LðS2Þ.
The simulator interacts with A1 and A2 as follows.

� System initialization phase: A1 sends the dataset
T ¼ fti ¼ ðti;1; ti;2; . . . ; ti;liÞji ¼ 1; 2;. . . ; ng and fidiji ¼ 1; 2;
. . . ; ng to the simulator. The simulator first publishes the
public key pk 2 LðS1Þ and sends sk 2 LðS2Þ to S2. Then, with
LðS1Þ and LðS2Þ, the simulator generates an encrypted kd-
tree E0ðTÞ. The main idea to build E0ðTÞ is to replace the val-
ues in EðTÞ’s internal nodes with random values generated
by LðS1Þ and self-blind the values in EðTÞ’s leaf nodes as
follows.

(1) Internal node replacement: For an internal node with
the value CTnode ¼ fðCTuL ; node:TlÞ; ðCTuR; node:TrÞg, the
simulator replacesCTuL andCTuR with two ð2kþ 4Þ-dimen-
sional random vectors. Then, the node becomes CT 0

node ¼
fðCT 0

uL
; node:TlÞ; ðCT 0

uR
; node:TrÞg.

(2) Leaf node self-blinding: The simulator first uses
fEð1Þ; Eð�1Þg 2 LðS1Þ to compute Eð0Þ ¼ Eð1Þ þEð�1Þ.
Then, for each internal node withEðtiÞ ¼ ðEðti;1Þ; Eðti;2Þ; . . . ;
Eðti;liÞÞ and EðidiÞ, the simulator self-blinds each Eðti;jÞ as
E0ðti;jÞ ¼ ðEðti;jÞ þ

P
h;�;s Eð0ÞhEð1Þ�Eð1ÞsÞmodN . Accord-

ing to SHE’s homomorphic properties, E0ðti;jÞ is also a
ciphertext of ti;j. Similarly, the simulator self-blinds EðidiÞ
intoE0ðidiÞ.

� Token generation phase 1: A1 submits w1 query requests
fðqi; diÞj1 � i � w1g to the simulator. The simulator gener-
ates the filtration token and verification token for each
ðqi; diÞ as follows.

(1) Filtration token: The simulator generates the filtration
token for ðqi; diÞ based on EðTÞ’s access pattern in LðS1Þ. Spe-
cifically, according to the access pattern, the simulator knows
fsignðCTuL � TKziÞ; signðCTuR � TKziÞg for each internal
node CTnode ¼ fðCTuL ; node:TlÞ; ðCTuR; node:TrÞg. Suppose
that there are g internal nodes in EðTÞ, i.e., CTnodej ¼
fðCTuL;j;CTuR;jÞjj ¼ 1; 2; . . . ; gg. The simulator generates a
2g-dimensional vector ri ¼ ðr1; r2; . . . ; r2g�1; r2gÞ. We set
r2i�1 > 0 if signðCTuL;j;TKziÞ > 0 and r2i�1 < 0 otherwise
for i ¼ 1; 2; . . . ; g. Similarly, we set r2i > 0 if signðCTuR;j;
TKziÞ > 0 and r2i < 0 otherwise for i ¼ 1; 2; . . . ; g. Then,
the simulator generates a filtration tokenTK0

zi
such that

CT 0
uL;1

CT 0
uR;1

� � �
CT 0

uL;2g�1

CT 0
uR;2g

2
66666664

3
77777775
TK0T

zi
¼ ri:
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(2) Verification token: The simulator generates the verifi-
cation token fE0ðqiÞ; E0ðdiÞg for each ðqi; diÞ by self-blinding
fEðqiÞ; EðdiÞg 2 LðS1Þ.

Finally, the simulator returns fðTK0
zi
; E0ðqiÞ; E0ðdiÞÞj 1 �

i � w1g to A1.
� Challenge phase: The challenger returns E0ðTÞ to A1.
� Token generation phase 2: In this phase, A1 submits w2 �

w1 similarity range query requests fðqi; diÞjw1 þ 1 � i � w2g
to the simulator and gets the query tokens fTK0

zi
;

E0ðqiÞ; E0ðdiÞjw1 þ 1 � i � w2g from the simulator.
� Similarity Range Query Processing: When A1 obtains the

query tokens fTK0
zi
; E0ðqiÞ; E0ðdiÞj1 � i � w2g, A1 and A2

cooperatively run the similarity query processing algorithm
to search on E0ðTÞ and obtain the query result for each
token fTK0

zi
; E0ðqiÞ; E0ðdiÞg.

In the ideal world, the view of A1, i.e., ViewA1;Ideal,
includes fE0ðTÞ; fTK0

zi
; E0ðqiÞ; E0ðdiÞgw2

i¼1g, access pattern of
E0ðTÞ and some SHE ciphertexts received in the privacy-
preserving protocols. The view of A2, i.e., ViewA2;Ideal,
includes the AES ciphertexts in the candidate result and
query result, and some plaintexts received in the privacy-
preserving protocols.

Definition 5 (Security of Our Scheme). Our scheme is
selectively secure with the leakage LðS1Þ and LðS2Þ iff for any
two adversary A1 and A2 issuing a polynomial number of simi-
larity range queries, there exists a simulator such that the
advantage that A1 and A2 can distinguish the view of real and
ideal experiments is negligible.

Theorem 2. Our scheme is selectively secure with the leakage
LðS1Þ and LðS2Þ iff the SHE technique is CPA-secure.

Proof. According to Definition 5, our scheme is selective
secure iff A1 and A2 cannot distinguish the view of real
and ideal experiments.

� A1 cannot distinguish the view of real and ideal
experiments. Specifically, ViewA1;Real includes fEðTÞ;
fTKzi ; EðqiÞ; EðdiÞgw2

i¼1g, access pattern of EðTÞ, the AES
ciphertexts in the candidate result and some SHE cipher-
texts received in the privacy-preserving protocols.
ViewA1;Ideal includes fE0ðTÞ; fTK0

zi
; E0ðqiÞ; E0ðdiÞgw2

i¼1g,
access pattern of E0ðTÞ, the AES ciphertexts in the candi-
date result and some SHE ciphertexts received in the pri-
vacy-preserving protocols. For the encrypted tree EðTÞ
and E0ðTÞ, both of them contain internal nodes and leaf
nodes. The internal nodes in EðTÞ are encrypted by the
invertible matrix encryption and those in E0ðTÞ are ran-
dom vectors. Since the invertible matrix encryption is
selectively secure as proved in [20], A1 cannot distin-
guish the internal nodes of EðTÞ and E0ðTÞ. The leaf
nodes of E0ðTÞ are generated by self-blinding those of
EðTÞ and both of them are encrypted by the SHE encryp-
tion technique. Since the SHE encryption is CPA-secure,
A1 cannot distinguish the leaf nodes of EðTÞ and E0ðTÞ.
Similarly, A1 also cannot distinguish fTKzi ; EðqiÞ;
EðdiÞgw2

i¼1 and fTK0
zi
; E0ðqiÞ; E0ðdiÞgw2

i¼1. For the access pat-
tern of EðTÞ, it is the same as that of E0ðTÞ. For the SHE
ciphertexts received in the privacy-preserving protocols,
the CPA security of the SHE encryption can guarantee
that the ciphertexts in the real experiment and those
in the ideal experiment are indistinguishable. Thus, A1

cannot distinguish the real and ideal experiments.

� A2 cannot distinguish the view of real and ideal
experiments. Specifically, ViewA2;Real includes the AES
ciphertexts in the candidate result and query result, and
some plaintexts received in the privacy-preserving proto-
cols. ViewA2;Ideal includes the AES ciphertexts in the can-
didate result and query result, and some plaintexts
received in the privacy-preserving protocols. Since both
the AES ciphertexts in the real and ideal experiments are
the ciphertexts of some random numbers, A2 cannot
distinguish them. For the plaintext received in the pri-
vacy-preserving protocols, each plaintext contains at
least one random numbers as described in Section 4.2.
Then, the plaintexts in both real experiment and ideal
experiment are random numbers. Thus,A2 cannot distin-
guish ViewA2;Real and A2 ViewA2;Ideal.

Therefore, A1 and A2 cannot distinguish the real and
ideal experiments, so our scheme is selectively secure
with the leakage LðS1Þ and LðS2Þ. tu

5.3 Resistance Against Cloud Inference Attack

In this subsection, we show that our scheme can resist
against the cloud inference attack. Since S1 stores the
encrypted data, only S1 possibly launches the cloud infer-
ence attack. As described in our security model, S1 can suc-
cessfully launch the cloud inference attack iff S1 has the
capability to compare these encrypted data, and the capabil-
ity to construct the ciphertext for any plaintext data at the
same time. In our scheme, we employ invertible matrix
encryption and SHE technique to respectively encrypt the
internal nodes and leaf nodes of the kd-tree. The matrix
encryption is a symmetric encryption with a secret key A.
Since the matrix encryption cannot support homomorphic
operations, S1 cannot construct the ciphertext for any plain-
text data. Although the SHE technique can support the
homomorphic properties such that S1 can construct the
ciphertext for any plaintext. However, S1 is not allowed to
obtain any plaintext comparison relationship over SHE’s
ciphertexts. Hence, our scheme can resist the cloud infer-
ence attack.

6 PERFORMANCE EVALUATION

We evaluate the performance of our scheme from the aspects
of local data outsourcing, similarity range query processing,
query token generation and query result recovery.

6.1 Experimental Setting

We implemented our scheme in Java and conducted experi-
ments on a machine with an Intel(R) Core(TM) i7-3770 CPU
@3.40 GHz, 16 GB RAM and Windows 10 operating system.
In our experiments, we use SHE technique to preserve the
data privacy, and the security parameters are set to k0 ¼
2048, k1 ¼ 20 and k2 ¼ 160. Then, the maximal multiplica-
tive depth of the scheme is u ¼ k0

2k2
� 1 
 5. Due to the limita-

tion of the multiplicative depth, S1 and S2 will call the
bootstrapping protocol to bootstrap the ciphertext when
computing the TWED. Specifically, after computing the
ciphertext of an element D½i; j� in Algorithm 1, S1 and S2

will bootstrap it once. Based on these parameters, we choose
a pair of public key and secret key, i.e., ðpk; skÞ. Meanwhile,
the session key ssk for the AES algorithm is a 256-bit
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random number. We evaluate the performance of our
scheme on a real ElectricDevices dataset derived from UCR
time series archive [21], which collects behavioral data
about how consumers use electricity within the home to
help reduce UK’s carbon footprint. The similarity range
query over this dataset can help to do classification for a
given time series and provide carbon emissions suggestions
to the user based on the similar time series data. This data-
set contains 16,637 time series records in total, and the
length of each record is 96. Since the values in the original
dataset are real numbers, we convert them into integers by
enlarging them 100 times and rounding their corresponding
enlarged data. In addition, for each experiment, we conduct
multiple times and the average result is reported.

6.2 Experimental Results

In this subsection, we will show the experimental results of
local data outsourcing, similarity range query processing,
query token generation, and query result recovery.

6.2.1 Local Data Outsourcing

In our scheme, the local data outsourcing phase builds and
encrypts the kd-tree. The computational cost is related to
three parameters, i.e., the size of the dataset n, the length of
time series records l, and the number of pivots k.

� The parameter n and k: In Fig. 3a, we plot the computa-
tional cost of local data outsourcing versus with n and k. In
this experiment, the parameters are set as n ¼ f5000; 10000;
15000g, k ¼ f4; 6; 8; 10g, and l ¼ 96. From this figure, we can
see that as n and k become larger, the computational cost of
local data outsourcing will increase. This is because the
larger the parameters n and k are, the larger the kd-tree is.
Then, the computational cost will correspondingly increase.

� The parameter l and k: In Fig. 3b, we plot the computa-
tional cost of local data outsourcing varying with l and k. In
this experiment, the parameters are set as l ¼ f30; 60; 90g,
k ¼ f4; 6; 8; 10g, and n ¼ 16637. From this figure, we can see
that the computational cost of local data outsourcing also
increases with the increase of l and k.

6.2.2 Similarity Range Query Processing

Since the similarity range query is processed by S1 and S2,
we evaluate the computational cost of query processing and
the communication overhead between S1 and S2.

Computational Cost. As described in Section 4.3, the
computational cost of the similarity range query processing
is affected by parameters n, l, k, and the similarity range d.

� The parameter n and k: In Fig. 3c, we plot the computa-
tional cost of similarity range query processing versus n
and k. In this experiment, the parameters are set as n ¼
f4000; 6000; . . . ; 16000g, k ¼ f4; 6; 8; 10g, d ¼ 350, and l ¼ 96.
From this figure, we can see that the computational cost of
query processing increases with the increase of n. Mean-
while, the difference of the computational costs in different
k values is not significant. Moreover, to validate the effi-
ciency of our filtration strategy, we plot the computational
cost of the query processing without filtration strategy in
Fig. 3c. The experiment result shows that our filtration strat-
egy is pretty efficient. For example, when n ¼ 14000 and k ¼
10, the computational cost with filtration is 1925 s, while
that without filtration is 95,912 s. That is, the filtration strat-
egy reduces about 97.9 percent computational cost.

� The parameter d and k: In Fig. 3d, we plot the computa-
tional cost of the similarity query processing varying with d.
In this experiment, we set d ¼ f300; 320; 340; 360; 380; 400g,
n ¼ 16637, l ¼ 96, and k ¼ f4; 6; 8; 10g. From Fig. 3d, we can

Fig. 3. Performance evaluation of our scheme.
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see that the computational cost increases as d becomes
larger. This is reasonable because the larger d results in that
more time series records can satisfy the query condition.
Therefore, both the filtration stage and verification stage
need to take more computational cost. Meanwhile, to vali-
date the efficiency of our filtration strategy, we also plot the
computational cost of similarity query processing without
filtration in Fig. 3d. We can see that the computational cost
with filtration is much less than that without filtration. For
example, when d ¼ 380 and k ¼ 4, the computational cost
with filtration is about 4137 s, while that without filtration is
113978 s. Thus, the filtration strategy reduces 96.3 percent
computational cost, and it is pretty efficient.

� The parameter l: As shown in Section 4.3, the parameter l
only has impact on the computational cost of TWED compu-
tation in the verification stage. Thus, we will evaluate how l
affects the computational cost of TWED computation. Spe-
cifically, we plot the computational cost of TWED computa-
tion varying with l as shown in Fig. 3e. In this experiment, l
varies from 10 to 90, and we see that the computational cost
of TWED computation grows with the increase of l. Overall,
our TWED computation algorithm is efficient. For example,
when l ¼ 80, computing the TWED between two series
records takes 4851 ms.

Communication Overhead. The similarity range queries are
processed by servers S1 and S2, and the query processing
process brings the communication overhead between S1

and S2. As described in Section 4.3, the similarity range
query contains the filtration phase and the verification
phase. Meanwhile, only the verification phase requires the
communication between S1 and S2. The main communica-
tion overhead comes from TWED computation and
depends on the parameter l. In Table 1, we show the com-
munication overhead of TWED computation varying with l.
From this table, we can see that the communication over-
head of TWED computation quadratically increases with l.

6.2.3 Query Token Generation

As described in Section 4.3, the computational cost of query
token generation is related to parameters l and k. Thus, in
Fig. 3f, we plot the computational of token generation vary-
ing with l and k. From this figure, we can see that when l
and k become larger, generating a query token takes more
computational cost. Overall, our query token generation
algorithm is efficient. For example, when k ¼ 10 and l ¼ 96,
generating a query token takes 0.67 ms.

6.2.4 Query Result Recovery

The query result is encrypted by the AES algorithm, so the
computational cost of query result recovery depends on the
computational cost of AES decryption. Since AES decryption
is extremely efficient, our scheme is efficient in query result

recovery. Specifically, decrypting a 2048-bit integer only
takes 0.076ms.

7 RELATED WORK

In the literature, various privacy-preserving time series sim-
ilarity query schemes were proposed. Existing schemes can
be divided into three categories, Lp-norm based time series
similarity query, edit distance based time series similarity
query and DTW-based time series similarity query.

For the Lp-norm based time series similarity query
schemes, the similarity between two time series records is
measured by Lp-norm distance. Especially, L2-norm, i.e.,
euclidean distance, is themost common considered distance.
Various privacy-preserving similarity query schemes can be
deployed to achieve euclidean distance based time series
similarity query. Specifically, Wong et al. [5] designed an
asymmetric scalar-product-preserving encryption scheme to
achieve similarity query over encrypted database. The
schemes [6], [7], [8], [9], [10], [11] use homomorphic encryp-
tion techniques (e.g., Paillier encryption) to design privacy-
preserving similarity query schemes. The scheme [22] was
designed for privacy-preserving Jaccard-based similarity
query, and it can also support euclidean-based similarity
query. In addition, since the euclidean distance computation
can be transformed to be inner product computation [5], the
function-hiding inner product encryption schemes [23], [24],
[25], [26], [27], [28], [29], [30] also can support euclidean dis-
tance based similarity query. As a similarity metric, euclid-
ean distance performs well for time series data in some
applications. However, euclidean distance and even
Lp-norm distance cannot support the similarity query over
time series data with different lengths.

The edit distance based time series similarity query
schemes [12], [13], [14], [31] can support the similarity query
over time series data with different lengths. Specifically, the
scheme [12] employed the garble circuit technique to design
a privacy-preserving edit distance based similarity query,
and it leverages the clustering method to reduce the compu-
tational cost of query processing. Although the scheme is
efficient, it can only achieves approximate similarity query.
The schemes [13], [14] proposed a similarity query algo-
rithm by combining two-party secret sharing, garble circuit
and partial homomorphic encryption techniques. However,
all of the schemes [13], [14] suffer from the linear search effi-
ciency. The scheme [31] deployed the customized garble cir-
cuit to achieve secure edit distance computation, but this
scheme did not consider similarity query.

To achieve similarity queries over time series data with
different lengths, dynamic time warping distance was pro-
posed in [32]. Meanwhile, someDTW-based similarity query
schemes [1], [2] were proposed. The scheme [1]was designed
in a client-server mode, and it employed a homomorphic
encryption technique to achieve similarity computation. On
the one hand, this scheme focuses on DTW-based similarity
evaluation, and did not consider similarity query. On the
other hand, this scheme is run between the client and the
server, the computational cost and communication cost of
the client is large. The scheme [2] designed a secure multi-
party computation protocol to achieve privacy-preserving
DTW-based similarity query. In the proposed protocol [2],

TABLE 1
Communication Overhead of TWED Computation With l

Time series’ length l 20 40 60 80

Comm. Overhead (MB) 2.58 10.55 24.02 42.97
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the authors used sliding window based DTW as the similar-
ity metric, and Keogh’s lower bound as a pruning condition
for the DTW-based similarity query. Furthermore, they
employed arithmetic sharing and garbled circuits techniques
to preserve the privacy of the querying process. Although it
can achieve efficient similarity query, it cannot return accu-
rate query results. Therefore, existing similarity range query
schemes over time series data still have some limitations.

8 CONCLUSION

In this paper, we have proposed an efficient and privacy-pre-
serving similarity range query scheme for time series data.
Specifically, we first organized time series data into a kd-tree
by leveraging TWED’s triangle inequality, and designed an
efficient similarity range query algorithm for the kd-tree.
Then, based on the SHE technique, we introduced a suite of
privacy-preserving protocols to provide security guarantee
for similarity range queries. Finally, we proposed our simi-
larity range query scheme based on the similarity range
query algorithm and our privacy-preserving protocols, in
which we elaborate on two strategies to make our scheme
resist against the cloud inference attack. Meanwhile, security
analysis demonstrated that our scheme is privacy-preserv-
ing and can resist against the cloud inference attack. In addi-
tion, performance evaluation validated its efficiency.
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